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We study the effect of a small viscosity on plane potential flow of a liquid with a 
free boundary in the form of the ellipse derived in [i]. Suppose at zero time the liquid 
with the velocity field 

= K2x/2 ,  vv= --  K2V/2 (1) 

is contained in the circle x 2 + y2 ~ l whose boundary is a free surface. The pressure and 
tangential stress on the free boundary S t are zero for all t ~ 0, and there are no external 
forces. The corresponding flow of an ideal incompressible liquid is potential and has the 
form [i] 

V x --~ T,,C-Iz, Yy : - - T T - I V ~  

p =--0,5~;~" (x~  - 4  + g2~2 _ t) ,  
T 

,f | f i t  + p - ~  dp = ~t (~ = const) ,  �9 (0) : t ,  1; : d~/dt. 
1 

(2) 

The solution of (2) can be interpreted as follows. As t increases the free boundary 
x 2 + y2 = i is deformed into the ellipse L : x2r -2 + yaT= = 1 with semiaxes T(t) and T-:(t). 
It follows from (2) that T + ~ and T -I § 0tfor t § = and X > 0. The ellipse is drawn out 
along the Ox axis. If X < 0, T § 0 as t ~ = and the ellipse is drawn out along the Oy axis. 

For vanishing viscosity (v § 0) a boundary layer is formed close to the free boundary 
S t in which the derivatives of the velocity vary rapidly and a finite vorticity appears. 
Everywhere outside the boundary layer region the behavior of the viscous liquid is similar 
to that of an ideal liquid. 

The flow of a viscous incompressible liquid is described by the Navier--Stokes equations 

av/Ot + (v, V)V : - - V P  + e2Av, div v : 0 (e ~ : t /Re)  (3)  

with the initial conditions (i) and the kinematic and dynamic conditions on the free boundary 

S t [2] 

OF/Ot + v . v f  = O; (4)  

p - -  2a 2 Ln~ ~ + n~ ~ § n~nv k-s § Oxll = O. (6) 

Here F(x, y, t) = 0 is the equation of the free boundary S t in implicit form, ~ = (nx, 
ny) is a unit vector along the inward normal to the free boundary St, and Re is the Reynolds 
number. The quantities in (3)-(6) are dimensionless. 
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Problem (3)-(6) is solved by the asymptotic boundary-layer method [3]. The asymptotic 
expansions of the solution of the problem as e § 0 are constructed in the form 

N N+i 
v,-~ ~ 8~vhCx, y , t )+  ~ 8kh~Cx,~,t, 8); 

~=0 h=0 
N ~+I 

~ Z 8~?h(x,~,~)+ ~ ~hq~(x,~,~,e); 
h--0 k=0 

N-}-I 

w h e r e  y = ~ ( x ,  t )  i s  t h e  e q u a t i o n  o f  t h e  f r e e  b o u n d a r y  S t . 

The  f u n c t i o n s  vo  a nd  Po d e s c r i b e  t h e  f l o w  o f  an  i d e a l  i n c o m p r e s s i b l e  l i q u i d  w i t h  t h e  
f r e e  b o u n d a r y  L t and  t h e  i n i t i a l  c o n d i t i o n  ( 1 ) ;  t h e i r  v a l u e s  a r e  d e t e r m i n e d  f r o m  e q u a t i o n s  
g i v e n  i n  [ 2 ] .  

The f u n c t i o n s  v k and  Pk a r e  f o u n d  i n  t h e  f i r s t  i t e r a t i o n  p r o c e d u r e  [3]  and s a t i s f y  
l i n e a r  e q u a t i o n s  o f  t h e  f o r m  

(7) 

o v  h 
0-7- + ~ (v~, V) v~ = - -  VP~ + Av,~_~, 

i+j=~ 

d i v v ~  = O, v~lt=o = 0 (v_~----- O, k > /  1). 

(8) 

Since rot vo = 0 it follows from (8) that rot v k O. Introducing #k by the relation 
v k = grad ~k we obtain from (8) the equations for ~k and Pk: 

h C h  = 0, 

�9 O(D~ 

o-7- + ~t-'x -~ 
h-i 

- -  V ~,Vh__ ! �9 
(9) 

The boundary-layer functions h k and qk are concentrated in the neighborhood of the free 
boundary S t and compensate the discrepancies in v k and Pk in satisfying the dynamic condi- 
tion (5). We construct the functions h k and qk by introducing moving local coordinates (p, 
~) close to the boundary L t by the expression 

x = ~(t - -  pr-z6-1)cos cp, y = T-I(I  - -  p*26-1)sin % 

6 = .~ :*~  sin"~ -c T-"cos"% ~ [0, 2.~ ], 

where x = T cos = and y = T-* sin e are the parametric equations of the ellipse Lt, P is the 
distance from the point (x, y) to Lt, and ~ is the value of the parameter ~ corresponding 

to the point on L t closest to (x, y). 

Let us determine the equations satisfied by the functions h k and qk" Let h0k , h~k, Vpk, 
and Vmk , be, respectively, the components of the vectors h k and v k in the coordinates (p, ~). 
Substituting (7) into (3) and using (8) and (2) we write the equations obtained in local co- 
ordinates. We expand the known coefficients in Taylor series in powers of 0 and take account 
of the relation ~0/~t + vo'V0 = 0 which is valid at 0 = 0 and expresses the property that the 
boundary L t be a liquid contour for all t > 0. We set O = es and equate the coefficients of 

o , - N g , e , ...,~ to zero. As shown in (4), h~ = qo = h0z = q l = 0. To determine h k and qk we 

obtain the equations 

Oh~h/Ot + sa(t, (p)Ohr - -  a(t, q>)h~k = 02h~h/c3s 2 + Fh--~, 

Oqh+~/Os = --2~t-16-~sin 2~h~k -~ Mh--l,  (10)  

oh~ = ~_~ s'~8 -(3~+i) 8 , , h . ~  ~ / ,  
Os n = 0  

hult=0 = 0, hkl~=~ ---- 0, q~l~=o~ = O, F o = M o  = O. 
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Here a(t, ~) = ~-~6-~ (r-a cos~ - r= sin~), and Fk_~ and Mk_~ are known and are ex- 

pressed in terms of vo, ..., Wk; ho, ..., hk-~. 

Similarly by applying the first and second iteration processes simultaneously to the 
dynamic condition (5) we obtain the boundary conditions for hck in (i0) for s = 0: 

Oh~/Os : - - (5 -1Ovp ,~_~/09  @ Ovr 9 + 6-~v~,~_~)@ Q~_~ (p = 0), Qo : 0. ( i l )  

To determine h~ we set k = i in (I0) and (ii), introduce a new function H = ~h~, and 
make the change of variables ~ = 6(t, ~ )s, t~ = t. Finally by defining a variable 

t 

= ~ 5 ~ (t, 9) dt, 
0 

we obtain for H(~, 9 , B) t h e  p r o b l e m  
OH~Of3 = OeH/O~ ~, 

//l~=o = O, / / i = ~  = O, OIt/O~ = ~2(P, 9 )  (~ = 0), 

where ~(8, 9) is the value of the function 25z-~6 -a sin 2 ~ in the variables (8, 9). The 
solution of the last problem has the following form in the old variables: 

t . 

he, = 2 5 - ' n  -~/2 sin 29 ~ [~ (t, 9) - -  ~ (U, 9)] -1/2 exp ~ (t, et)-- ~ (u, ~) du. 

We f i n d  f r o m  (10)  

t �9 

q~. = 4~ ~-~8 - ~  sin ~ 29o ~ erfc du. 
2 ] /1~ ( t ,  ~o)-- ~(u ,  r 

We next determine the equations satisfied by the functions ~k(t, ~). Let p = ~(t, ~, 

N 

e) ~ ~ eh~h (t, 9) b e  t h e  e q u a t i o n  o f  t h e  f r e e  b o u n d a r y  S t i n  l o c a l  c o o r d i n a t e s ;  h e r e  ~o = 0 ,  
h = 0  

since p = 0 is the equation of L t. We set F = -- p + ~(t,@, e) and by applying the first and 
second iteration procedures simultaneously to (4) [3] we obtain 

O~k/Ot --  a(t, 9)~k --- [hob @ vo~ ]p=0 + Nh-- i ,  

~klt=0 = 0 ,  N 0 = N ~ = 0  ( k > t ) .  

Proceeding similarly with the dynamic conditions (6) 
tions for systems (9) on Lt: 

Ph + qh + 5 ~ k  = 20vp, ~,-2/Op + O~_: 

Do : D 1  : 0 ( k >  1). 

(12) 

on S t we obtain the boundary condi- 

(p = o), (13) 

As shown in [4], p~ = ~ = v, = 0, and Nk_1 and Dk_~ are known. 

We now set k = 2 in (9), (12), and (13), eliminate P2, and introduce the function ~ = 
5~. To determine r and ~ we obtain the following problem in the ellipse Dt(x2T -2 + y2T2 
i): 

Aap e = 0, 

Oape/Ot - -  ~ '~  = 44~-16 -~ sin S 29 in T - 2a(t, 9) (p = 0), 

OqlOt - -  60ap~lOp = 45-~(T-2cos2 9 - -  T2sine9) (p = 0), 

~1 = a P e  = 0 (t = 0 ) .  

(!4) 

In the domain D t we transform to elliptical coordinates (a, 0): x = c cosh ~ cos 0, y = 
c sinh o sin 8 (o a O, 0 ~ e g 2z), where r = c cosh ao and r-: = c sinh ao are the semiaxes 
of the ellipse, and ~ = Oo is the equation of the contour L t. We expand r and ~ in series 
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Fig. i 

, . c h k ~  
O ~ =  r ~)  C--ff-~o CO S kO, ' 1 =  "qh ('0 cos kq )" 

h=O k=0 

From (14) we obtain the system of linear equations 

.c2 do) k __ 2T 4 

~2 dVl~ 
VF-~'~ :7 + kck~% = Bh (% 

r = nh = 0 (~ = t )  

for the coefficients ~k and n k. 

The coefficients Ak, Bk, c k are known: 

A 2 h  = _ _  

�9 2T , (~ __ ~ 4~ ~ in ~ 
Ao = - -  (, $ : + : :  ) ,  

] / i  + z 4 (t + ~2)h+i z 2 - -  i - -  2 ~ - - +  f 

B2k = ~ \ ~ - ~ + i /  , A2k+,  = B2k+i = 0 

2T 2 C 2 ~ C2h--2 
Co = c - 2  = O, c~ = t - - ' f ~ ;  c ~  = i + c~c2k_ 2 

(k/> 0), 

(k~>t) .  

The last system was solved numerically on an M-222 computer by the Runge--Kutta method. 
The form of the free boundary is shown in Fig. i for T = i, T = 1.4, and T = 2. The solid 
curve represents the boundary L t and the open curve S t . Whether the ellipse is drawn out or 
flattened in the course of time the effect of viscosity is to slow down the process and to 
"round" the free boundary. 

The author thanks L. S. Srubshchik and V. I. Yudovich for posing the problem and for a 
discussion of the results. 
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